K«

— 2018

»

K«

»

K«

»

5 2018 .

$
(proof-of-work).

(

$*

& -

'

!
Bitcoin)

nonce

BXOII;[—IOG 3HAUCHHC X

Xom-xog H

l

‘ Xom-GyHKITHA

h(x)

A 4

0000010110011101

1010

IlepemenHas
BEJIHYHHA

- proof-of-work (1)
% .

vl 2016
, 10
. , * 1 2 :
2016 * 10 . = 20160 .» 393 »14,7
- 2016x10
T OET e4T
4 . .
T - ;
t o ’
* 2016
% 1]
4 $. H# 2016
2 ,) , *

%

K«

K«

& !

» (fork):

» (1

- 10

proof-of-work (2)

*

nonce

.1 , -
& :) " " ?-0
Bitcoin * , & & & :
(..) &)
) ! : * ; : &
(transaction fees) (mining).
-) L) ! , "
! : * -)
)) ! "
.2 Bitcoin
50 (50 BTC). " "o 210 000
& (1 4).
& ' ! :
10° BTC. ,
& (satoshi). ' "
2040 .

0

- % (proof-of-work) *
« 51%» (« 0 »). ? - « » | !

3
5
7
9

11

$)
1) (state machine),
2) , |
|)
0 :

(atomic broadcast),!
K« ».
* «

» (ev.entual-synchrony model):
$* $ *

(| |

Byzantine Generals Problem. A commanding general must send an order to
his n — 1 lieutenant generals such that

IC1. All loyal lieutenants obey the same order.
IC2. If the commanding general is loyal, then every loyal lieutenant obeys the

order he sends.

Conditions IC1 and IC2 are called the interactive consistency conditions. Note
that if the commander is loyal, then IC1 follows from IC2. However, the com-
mander need not be loyal.

“attack"’ “retreat”

-— “he said ‘retreat’”’ / // - “he said ‘retreat’ "’

Fig.1. Lieutenant 2 a traitor. Fig.2. The commander a traitor.

10

3 & ! !
€@)@

Al. Every message that is sent is delivered correctly.
A2. The receiver of a message knows who sent it.
A3. The absence of a message can be detected.

" m— i
Algorithm OM (0).

(1) The commander sends his value to every lieutenant.

(2) Each lieutenant uses the value he receives from the commander, or uses the value
RETREAT if he receives no value.

Algorithm OM(m), m > 0.

(1) The commander sends his value to every lieutenant.

(2) For each i, let v; be the value Lieutenant i receives from the commander, or else be
RETREAT if he rezeives no value. Lieutenant i acts as the commander in Algorithm
OM(m — 1) to send the value v; to each of the n — 2 other lieutenants.

(3) For each i, and each j # i, let v; be the value Lieutenant i received from Lieutenant j
in step (2) (using Algorithm OM(m — 1)), or else RETREAT if he received no such
value. Lieutenant i uses the value majority(vy, ..., Un-1).

11

3 & | |
'») (2)

COMMANDER

Fig. 3. Algorithm OM(1); Lieutenant 3 a
traitor.

Y

-
< ~~
A

|
—_——

Fig. 4. Algorithm OM(1); the comman-
der a traitor.

~C
o e_
< ~N

THEOREM 1. For cny m, Algorithm OM (m) satisfies conditions IC1 and IC2
if there are more than 3m generals and at most m traitors.

12

3 & ! !
| (« | ») * (1)

Al. Every message that is sent is delivered correctly.
A2. The receiver of a message knows who sent it.
A3. The absence of a message can be detected.

A4 (a) A loyal general’s signature cannot be forged, and any alteration of the
contents of his signed messages can be detected.
(b) Anyone can verify the authenticity of a general’s signature.

I 1 :
Our algorithm assumes a function choice which is applied to a set of orders to
/obtain a single one. The only requirements we make for this function are

1. If the set V consists of the single element v, then choice(V) = v.
2. choice(D) = RETREAT, where @ is the empty set.

Note that one possible definition is to let choice(V) be the median element of

V—assuming that there is an ordering of the elements.
In the following algorithm, we let x: i denote the value x signed by General i.
Thus, v:j:i denotes the value v signed by j, and then that value v:J signed by i.

13

3 & | |
| (« | ») * (2)
Algorithm SM(m).
Initially V; = @.

(1) The commander signs and sends his value to every lieutenant.
(2) For each i:

(A) If Lieutenant i receives a message of the form v:0 from the commander and he
has not yet received any order, then

(1) he lets V; equal {v);
(i1) he sends the message v:0:: to every other lieutenant.

(B) If Lieutenant i receives a message of the form v:0:j;: - - - : jz and v is not in the set
V;, then
(i) he adds v to V;; o _
(i) if k < m, then he sends the message v:0:j;: - - : ji:i to every lieutenant other
thﬂ.]ljj,, i..,j.k-
(3) For each i: When Lieutenant i will receive no more messages, he obeys the order
chaice{V,-}.

14

| (« .! ») - (3)
DMMANDE

“retreat’ : 0

“attack™:0:1
————————————————————
LIEUTENANT
i — e ———— 2

“retreat’ " :0:2

Fig. 5. Algorithm SM(1); the commander a traitor.

THEOREM 2. For any m, Algorithm SM(m) solves the Byzantine Generals
Problem if there are at most m traitors.

15

+
(crash-tolerant consensus) (1)

As mentioned earlier, the form of consensus relevant for blockchain is technically known as
atomic broadcast. It is formally obtained as an extension of a reliable broadcast among the
node, which also provides a global or total order on the messages delivered to all correct nodes.
An atomic broadcast is characterized by two (asynchronous) events broadcast and deliver
that may occur multiple times. Every node may broadcast some message (or transaction) m

by invoking broadcast(m), and the broadcast protocol outputs m to the local application on
the node through a deliver(m) event.

Validity: If a correct node p broadcasts a message m, then p eventually delivers m.

Agreement: If a message m is delivered by some correct node, then m is eventually delivered
by every correct node.

Integrity: No correct node delivers the same message more than once; moreover, if a correct

node delivers a message m and the sender p of m is correct, then m was previously
broadcast by p.

Total order: For messages m; and ms, suppose p and g are two correct nodes that deliver
m; and ms. Then p delivers m,; before ms if and only if ¢ delivers m; before ms.

16

1. Paxos
2. Zab
3. Ratft

(crash-tolerant consensus) (2)

. https://zookeeper.apache.org/

- https://github.com/coreos/etcd

17

«2 »
(byzantine consensus)

1. PBFT (Practical Byzantine Fault-Tolerant)

2. BFT-SMaRt

. https://github.com/bft-smart/library

3. HoneyBadger

18

PBFT

19

0
& ? -0 , '
2/3+1

2 7

3 10
4 13
5 16

20

o« | *

| *
o« | *
¢« | *

$* !

(
Fabric) (1)

Hyperledger

(validation)

$

21

2.

3.

#

%

0

(
Fabric) (2)

$

Hyperledger

(ordering).

(« »).
. %

22

K«

(1)

contract — @«
$
. [«2

(Ethereum).
! :

: &

») —

»].

(Hyperledger Fabric),

23

e -

JavaScript
o #

0 (2)
(Ethereum Wallet — « & -
& : *
. Ethereum — Solidity, Hyperledger Fabric —

proof-of-work,
(Ethereum-).

»).

Go,

24

